1. Exercises from Sections 2.4-2.5

Problem 1. (Folland 2.4.5) Suppose S is a convex, connected open set and $f: S \rightarrow \mathbb{R}$ is differentiable with $\partial_{1} f=0$ for all $x \in S$, then $f(a)=f(b)$ for all $a, b \in S$ such that $a_{j}=b_{j}$ for all $j \neq 1$.

Proof. We prove by contrapositive.
(1) Draw picture
(2) Suppose that f is not independent of x_{1}, so that there exist points $a, b \in S$ with $a \neq b$ and $f(a) \neq f(b)$, but $a_{j}=b_{j}$ for every $j \neq 1$.
(3) By convexity and connectedness of S, there is a line segment L joining a to b completely contained in S.
(4) Applying the mean value theorem, there exists a point $c \in L$ such that

$$
f(b)-f(a)=\nabla f(c) \cdot(b-a)
$$

(5) $b-a=\left(b_{1}-a_{1}\right) \hat{x}_{1}$, since $a_{j}=b_{j}$ for all $j \neq 1$
(6) By differentiability of f,

$$
\nabla f(c) \cdot(b-a)=\left.\frac{\partial f}{\partial x_{1}}\right|_{x=c}\left(b_{1}-a_{1}\right)
$$

(7) Now we just estimate:

$$
\left|\frac{\partial f}{\partial x_{1}}\right|_{x=c} \left\lvert\,=\frac{|f(b)-f(a)|}{\left|b_{1}-a_{1}\right|}>0\right.
$$

(8) So there exists a point $c \in S$ at which $\partial_{1} f \neq 0$. This completes the proof.

Explain the counter example when S is not convex or connected by drawing some pictures.

